Skip to the content.

Converting an ONNX Model

Install model-archiver with ONNX support

ONNX support is optional in model-archiver tool. It’s not installed by default with model-archiver.

To install MMS with ONNX support, you will need to have the protobuf compiler installed:

for Ubuntu run:

sudo apt-get install protobuf-compiler libprotoc-dev

pip install model-archiver[onnx]

Or for Mac run:

conda install -c conda-forge protobuf numpy

pip install model-archiver[onnx]

MXNet is also required for conversion. You can choose different flavor is mxnet:

pip install mxnet

or

pip install mxnet-mkl

or

pip install mxnet-cu90mkl

ONNX model archive example

You can download a model from the ONNX Model Zoo then use model-archiver to covert it to a .mar file.

Note: Some ONNX model authors upload their models to the zoo in the .pb or .pb2 format. Just change the extension to .onnx before attempting to convert.

Let’s use the SqueezeNet ONNX model as an example.

Prepare ONNX model and labels

To create a model archive for MMS, you can get .onnx file and optionally a labels file (synset.txt) from our S3:

cd multi-model-server/examples
mkdir onnx-squeezenet
cd onnx-squeezenet

curl -O https://s3.amazonaws.com/model-server/model_archive_1.0/examples/onnx-squeezenet/squeezenet.onnx
curl -O https://s3.amazonaws.com/model-server/model_archive_1.0/examples/onnx-squeezenet/synset.txt

Prepare your model custom service code

You can implement your own model customer service code as model archive entry point. In this example we just copy provided mxnet vision service template:

cd multi-model-server/examples

cp -r model_service_template/* onnx-squeezenet/

The mxnet_vision_service.py assume there is a signature.json file that describes input parameter name and shape. You can download example from: signature file.

cd multi-model-server/examples/onnx-squeezenet

curl -o signature.json https://s3.amazonaws.com/model-server/model_archive_1.0/examples/onnx-squeezenet/signature.json

Create a .mar file from onnx model

The model file in this example contains.onnx extension.

In order to convert the model with .onnx extension to an MXNet model, we would need to use the -c option of the model-archiver tool.

Now you can use the model-archiver command to output onnx-squeezenet.mar file.

cd multi-model-server/examples

model-archiver --model-name onnx-squeezenet --model-path onnx-squeezenet --handler mxnet_vision_service:handle -c -f

Now start the server:

cd multi-model-server

multi-model-server --start --model-store examples --models squeezenet=onnx-squeezenet.mar

After your server starts, you can use the following command to see the prediction results.

curl -X POST http://127.0.0.1:8080/predictions/squeezenet -T docs/images/kitten_small.jpg