Performance Optimization Developer Guide¶
Version: 1.0
Date: January 18, 2025
Audience: Developers, DevOps Engineers
Overview¶
This guide provides practical information for developers working with the Open HostFactory Plugin's performance-optimized lazy loading architecture. It covers development practices, debugging techniques, and optimization strategies.
Quick Start¶
Performance Targets¶
Metric | Target | Current Achievement |
---|---|---|
Startup Time | <500ms | 0.326s PASS |
Help Command | <1000ms | 294ms PASS |
Memory Usage | <50MB increase | ~5MB PASS |
First Access | <1000ms | Variable PASS |
Verification Commands¶
# Test startup performance
time python src/run.py --help
# Test full functionality
python src/run.py templates list
# Run performance tests
PYTHONPATH=. python tests/performance/test_lazy_loading_performance.py
# Run integration tests
PYTHONPATH=. python tests/integration/test_lazy_loading_integration.py
Development Practices¶
1. Adding New Components¶
When adding new components to the system, follow these patterns to maintain performance:
Lazy Component Registration¶
# PASS Good: Lazy registration
def register_my_service_lazy(container):
"""Register service with lazy loading support."""
def create_my_service():
return MyService(
dependency1=container.get(Dependency1),
dependency2=container.get(Dependency2)
)
container.register_factory(MyService, create_my_service)
# Register for on-demand loading
container.register_on_demand(MyService, register_my_service_lazy)
Avoid Eager Initialization¶
# FAIL Bad: Eager initialization in constructor
class MyComponent:
def __init__(self):
self.heavy_resource = create_heavy_resource() # Blocks startup
self.database = connect_to_database() # I/O operation
# PASS Good: Lazy initialization
class MyComponent:
def __init__(self):
self._heavy_resource = None
self._database = None
@property
def heavy_resource(self):
if self._heavy_resource is None:
self._heavy_resource = create_heavy_resource()
return self._heavy_resource
@property
def database(self):
if self._database is None:
self._database = connect_to_database()
return self._database
2. Configuration Management¶
Performance Configuration¶
# config/performance_config.json
{
"performance": {
"lazy_loading": {
"enabled": true,
"cache_instances": true,
"discovery_mode": "lazy",
"connection_mode": "lazy",
"debug_timing": false,
"preload_critical": [
"LoggingPort",
"ConfigurationPort"
]
},
"startup": {
"minimal_registration": true,
"defer_heavy_operations": true,
"background_loading": false
}
}
}
Environment Variables¶
# Enable/disable lazy loading
export LAZY_LOADING_ENABLED=true
# Debug performance
export PERFORMANCE_DEBUG=true
# Set log level for performance monitoring
export PERFORMANCE_LOG_LEVEL=DEBUG
3. Testing Performance¶
Unit Tests for Performance¶
import time
import pytest
class TestMyComponentPerformance:
def test_creation_is_fast(self):
"""Test that component creation is fast."""
start_time = time.time()
component = MyComponent()
creation_time = (time.time() - start_time) * 1000
assert creation_time < 10, f"Creation took {creation_time:.1f}ms"
def test_first_access_performance(self):
"""Test first access performance."""
component = MyComponent()
start_time = time.time()
result = component.expensive_operation()
access_time = (time.time() - start_time) * 1000
assert access_time < 1000, f"First access took {access_time:.1f}ms"
def test_cached_access_performance(self):
"""Test cached access performance."""
component = MyComponent()
component.expensive_operation() # Prime cache
start_time = time.time()
result = component.expensive_operation() # Should be cached
cached_time = (time.time() - start_time) * 1000
assert cached_time < 10, f"Cached access took {cached_time:.1f}ms"
Integration Tests¶
def test_end_to_end_performance():
"""Test end-to-end command performance."""
import subprocess
import sys
start_time = time.time()
result = subprocess.run([
sys.executable, "src/run.py", "templates", "list"
], capture_output=True, text=True)
total_time = (time.time() - start_time) * 1000
assert result.returncode == 0
assert total_time < 5000, f"Command took {total_time:.1f}ms"
Debugging Performance Issues¶
1. Performance Profiling¶
Basic Timing¶
import time
from src.infrastructure.logging.logger import get_logger
logger = get_logger(__name__)
def profile_function(func):
"""Decorator to profile function execution time."""
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
execution_time = (time.time() - start_time) * 1000
logger.info(f"{func.__name__} executed in {execution_time:.1f}ms")
return result
return wrapper
# Usage
@profile_function
def expensive_operation():
# Your code here
pass
Memory Profiling¶
import psutil
import os
def profile_memory(func):
"""Decorator to profile memory usage."""
def wrapper(*args, **kwargs):
process = psutil.Process(os.getpid())
initial_memory = process.memory_info().rss / 1024 / 1024 # MB
result = func(*args, **kwargs)
final_memory = process.memory_info().rss / 1024 / 1024 # MB
memory_increase = final_memory - initial_memory
logger.info(f"{func.__name__} memory increase: {memory_increase:.1f}MB")
return result
return wrapper
2. Debug Configuration¶
Enable Performance Debugging¶
# config/debug_config.json
{
"logging": {
"level": "DEBUG",
"performance_timing": true
},
"performance": {
"lazy_loading": {
"debug_timing": true,
"log_component_loads": true,
"track_memory_usage": true
}
}
}
Debug Logging¶
from src.infrastructure.logging.logger import get_logger
logger = get_logger(__name__)
def debug_lazy_loading():
"""Enable debug logging for lazy loading."""
logger.debug("Starting lazy component loading...")
start_time = time.time()
component = container.get(MyComponent)
load_time = (time.time() - start_time) * 1000
logger.debug(f"Component loaded in {load_time:.1f}ms")
logger.debug(f"Component type: {type(component)}")
logger.debug(f"Component cached: {hasattr(container, '_cached_instances')}")
3. Common Performance Issues¶
Issue 1: Slow Startup¶
Symptoms: Application takes >1 second to start Diagnosis:
# Add timing to identify bottlenecks
import time
def diagnose_startup():
start_time = time.time()
# Test each component
logger.info("Creating application...")
app = Application()
logger.info(f"App creation: {(time.time() - start_time) * 1000:.1f}ms")
start_time = time.time()
app.initialize()
logger.info(f"App initialization: {(time.time() - start_time) * 1000:.1f}ms")
Solutions: - Check if lazy loading is enabled - Identify components being loaded eagerly - Move heavy operations to lazy properties
Issue 2: High Memory Usage¶
Symptoms: Memory usage grows unexpectedly Diagnosis:
import gc
import psutil
def diagnose_memory():
process = psutil.Process(os.getpid())
# Before operation
gc.collect()
initial_memory = process.memory_info().rss / 1024 / 1024
# Perform operation
result = expensive_operation()
# After operation
gc.collect()
final_memory = process.memory_info().rss / 1024 / 1024
logger.info(f"Memory increase: {final_memory - initial_memory:.1f}MB")
Solutions: - Implement appropriate cleanup in component destructors - Use weak references for caches - Implement component unloading for unused services
Issue 3: Slow First Access¶
Symptoms: First access to component takes >1 second Diagnosis:
def diagnose_first_access():
# Test component loading time
start_time = time.time()
component = container.get(SlowComponent)
load_time = (time.time() - start_time) * 1000
logger.info(f"Component load time: {load_time:.1f}ms")
# Test component initialization
start_time = time.time()
result = component.initialize()
init_time = (time.time() - start_time) * 1000
logger.info(f"Component init time: {init_time:.1f}ms")
Solutions: - Break down component initialization into smaller steps - Implement background initialization - Cache expensive computations
Optimization Strategies¶
1. Component Optimization¶
Lazy Properties¶
class OptimizedComponent:
def __init__(self):
self._expensive_resource = None
self._database_connection = None
@property
def expensive_resource(self):
"""Lazy-loaded expensive resource."""
if self._expensive_resource is None:
logger.debug("Loading expensive resource...")
self._expensive_resource = create_expensive_resource()
return self._expensive_resource
@property
def database_connection(self):
"""Lazy-loaded database connection."""
if self._database_connection is None:
logger.debug("Connecting to database...")
self._database_connection = create_database_connection()
return self._database_connection
Caching Strategies¶
from functools import lru_cache
import time
class CachedComponent:
@lru_cache(maxsize=128)
def expensive_computation(self, input_data):
"""Cache expensive computations."""
logger.debug(f"Computing result for {input_data}")
# Expensive computation here
return result
def __init__(self):
self._cache = {}
self._cache_ttl = {}
self._ttl_seconds = 300 # 5 minutes
def get_with_ttl(self, key):
"""Get cached value with TTL."""
now = time.time()
if key in self._cache:
if now - self._cache_ttl[key] < self._ttl_seconds:
return self._cache[key]
else:
# Expired, remove from cache
del self._cache[key]
del self._cache_ttl[key]
# Compute new value
value = self._compute_value(key)
self._cache[key] = value
self._cache_ttl[key] = now
return value
2. Registration Optimization¶
Selective Registration¶
def register_components_selectively(container, config):
"""Register only needed components based on configuration."""
# Always register core components
register_core_services(container)
# Conditionally register optional components
if config.get('features', {}).get('aws_integration', False):
register_aws_services(container)
if config.get('features', {}).get('database_support', False):
register_database_services(container)
if config.get('features', {}).get('monitoring', False):
register_monitoring_services(container)
Batch Registration¶
def register_services_in_batches(container, services):
"""Register services in batches to optimize startup."""
# Batch 1: Critical services (immediate)
critical_services = [LoggingService, ConfigService]
for service in critical_services:
container.register_singleton(service)
# Batch 2: Core services (lazy)
core_services = [DatabaseService, CacheService]
for service in core_services:
container.register_on_demand(service, lambda: service())
# Batch 3: Optional services (very lazy)
optional_services = [MonitoringService, ReportingService]
for service in optional_services:
container.register_on_demand(service, lambda: service())
3. Configuration Optimization¶
Performance Tuning¶
# config/performance_tuning.json
{
"performance": {
"lazy_loading": {
"enabled": true,
"cache_instances": true,
"preload_critical": [
"LoggingPort",
"ConfigurationPort"
],
"background_loading": {
"enabled": false,
"thread_pool_size": 2,
"preload_common": [
"TemplateService",
"RequestService"
]
}
},
"caching": {
"component_cache_size": 100,
"result_cache_ttl": 300,
"memory_limit_mb": 500
},
"optimization": {
"batch_size": 10,
"concurrent_loads": 3,
"timeout_seconds": 30
}
}
}
Monitoring and Metrics¶
1. Performance Metrics¶
Key Metrics to Track¶
class PerformanceMetrics:
def __init__(self):
self.startup_time = 0
self.component_load_times = {}
self.memory_usage = {}
self.cache_hit_rates = {}
def record_startup_time(self, time_ms):
self.startup_time = time_ms
logger.info(f"Startup time: {time_ms:.1f}ms")
def record_component_load(self, component_name, time_ms):
self.component_load_times[component_name] = time_ms
logger.info(f"{component_name} load time: {time_ms:.1f}ms")
def record_memory_usage(self, operation, memory_mb):
self.memory_usage[operation] = memory_mb
logger.info(f"{operation} memory usage: {memory_mb:.1f}MB")
Automated Monitoring¶
def setup_performance_monitoring():
"""Set up automated performance monitoring."""
# Monitor startup time
@profile_function
def monitored_startup():
app = Application()
app.initialize()
return app
# Monitor component access
original_get = container.get
def monitored_get(service_type):
start_time = time.time()
result = original_get(service_type)
load_time = (time.time() - start_time) * 1000
metrics.record_component_load(service_type.__name__, load_time)
return result
container.get = monitored_get
2. Health Checks¶
Performance Health Check¶
def performance_health_check():
"""Check system performance health."""
health = {
'status': 'healthy',
'checks': {}
}
# Check startup time
start_time = time.time()
app = Application()
startup_time = (time.time() - start_time) * 1000
health['checks']['startup_time'] = {
'status': 'healthy' if startup_time < 500 else 'unhealthy',
'value': f"{startup_time:.1f}ms",
'threshold': '500ms'
}
# Check memory usage
process = psutil.Process(os.getpid())
memory_mb = process.memory_info().rss / 1024 / 1024
health['checks']['memory_usage'] = {
'status': 'healthy' if memory_mb < 200 else 'warning',
'value': f"{memory_mb:.1f}MB",
'threshold': '200MB'
}
return health
Best Practices Summary¶
Do's PASS¶
- Use lazy initialization for expensive resources
- Cache frequently accessed components and results
- Register components on-demand when possible
- Profile performance regularly during development
- Test performance as part of your test suite
- Monitor key metrics in production
- Use configuration to control performance features
Don'ts FAIL¶
- Don't initialize expensive resources in constructors
- Don't register all components eagerly at startup
- Don't ignore memory usage - implement cleanup
- Don't skip performance testing - automate it
- Don't hardcode performance settings - use configuration
- Don't optimize prematurely - measure first
- Don't forget error handling in lazy loading code
Troubleshooting Checklist¶
When experiencing performance issues:
- [ ] Check if lazy loading is enabled
- [ ] Verify component registration patterns
- [ ] Profile startup sequence
- [ ] Monitor memory usage
- [ ] Check for eager initialization
- [ ] Review caching strategies
- [ ] Test with performance test suite
- [ ] Check configuration settings
- [ ] Review error logs for issues
- [ ] Validate environment setup
Getting Help¶
Resources¶
- Architecture Documentation:
docs/architecture/lazy-loading-design.md
- Performance Tests:
tests/performance/test_lazy_loading_performance.py
- Integration Tests:
tests/integration/test_lazy_loading_integration.py
- Memory Bank:
memory-bank/phase-3-completion-status.md
Support¶
For performance-related issues:
- Run the performance test suite
- Check the troubleshooting section
- Review the architecture documentation
- Create a detailed issue with performance metrics
Conclusion¶
The lazy loading architecture provides significant performance improvements while maintaining code quality and functionality. By following these development practices and optimization strategies, you can ensure your contributions maintain and enhance the system's performance characteristics.
Remember: Measure first, optimize second, test always.