s3torchconnector.lightning
Submodules
Classes
A checkpoint manager for S3 using the |
Package Contents
- class s3torchconnector.lightning.S3LightningCheckpoint(region: str, s3client_config: s3torchconnector._s3client.S3ClientConfig | None = None, endpoint: str | None = None)[source]
Bases:
lightning.pytorch.plugins.io.CheckpointIO
A checkpoint manager for S3 using the
CheckpointIO
interface.- region
- save_checkpoint(checkpoint: Dict[str, Any], path: str, storage_options: Any | None = None) None [source]
Save model/training states as a checkpoint file through state-dump and upload to S3.
- Parameters:
checkpoint (Dict[str, Any]) – Containing model and trainer state
path (str) – Write-target S3 uri
storage_options – Optional parameters when saving the model/training states.
- load_checkpoint(path: str, map_location: Any | None = None) Dict[str, Any] [source]
Load checkpoint from an S3 location when resuming or loading ckpt for test/validate/predict stages.
- Parameters:
path (str) – S3 uri to checkpoint
map_location – A function,
torch.device
, string or a dict specifying how to remap storage locations.
- Returns:
The loaded checkpoint
- Return type:
Dict[str, Any]
- Raises:
S3Exception – An error occurred accessing S3.