Source code for aws.osml.gdal.sicd_sensor_model_builder

#  Copyright 2023-2024 Amazon.com, Inc. or its affiliates.

import logging
from typing import Optional, Union

import numpy as np
from xsdata.formats.dataclass.parsers import XmlParser

import aws.osml.formats.sicd.models.sicd_v1_2_1 as sicd121
import aws.osml.formats.sicd.models.sicd_v1_3_0 as sicd130

from ..photogrammetry import (
    ImageCoordinate,
    INCAProjectionSet,
    PFAProjectionSet,
    PlaneProjectionSet,
    Polynomial2D,
    PolynomialXYZ,
    RGAZCOMPProjectionSet,
    SARImageCoordConverter,
    SensorModel,
    SICDSensorModel,
    WorldCoordinate,
)
from .sensor_model_builder import SensorModelBuilder

logger = logging.getLogger(__name__)


[docs] def xyztype_to_ndarray(xyztype: Union[sicd121.XYZType, sicd130.XYZType]) -> np.ndarray: """ Convert the XYZType to a 1-d NumPy array. :param xyztype: the XYZType dataclass :return: the NumPy array """ return np.array([xyztype.x, xyztype.y, xyztype.z])
[docs] def poly1d_to_native(poly1d: Union[sicd121.Poly1DType, sicd130.XYZType]) -> np.polynomial.Polynomial: """ Convert the Poly1DType to a NumPy Polynomial. :param poly1d: the Poly1D dataclass :return: the NumPy polynomial with matching coefficients """ coefficients = [0] * (poly1d.order1 + 1) for coef in poly1d.coef: coefficients[coef.exponent1] = coef.value return np.polynomial.Polynomial(coefficients)
[docs] def poly2d_to_native(poly2d: Union[sicd121.Poly2DType, sicd130.Poly2DType]) -> Polynomial2D: """ Convert the Poly2D dataclass to a Polynomial2D. :param poly2d: the Poly2D dataclass :return: the Polynomial2D with matching coefficients """ coefficients = [0] * (poly2d.order1 + 1) for row in range(0, len(coefficients)): coefficients[row] = [0] * (poly2d.order2 + 1) for coef in poly2d.coef: coefficients[coef.exponent1][coef.exponent2] = coef.value return Polynomial2D(np.array(coefficients))
[docs] def xyzpoly_to_native(xyzpoly: Union[sicd121.XYZPolyType, sicd130.XYZPolyType]) -> PolynomialXYZ: """ Convert the XYZPoly dataclass into a PolynomialXYZ. :param xyzpoly: the XYZPoly dataclass :return: the PolynomialXYZ with matching coefficients """ return PolynomialXYZ( x_polynomial=poly1d_to_native(xyzpoly.x), y_polynomial=poly1d_to_native(xyzpoly.y), z_polynomial=poly1d_to_native(xyzpoly.z), )
[docs] class SICDSensorModelBuilder(SensorModelBuilder): """ This builder is used to create sensor models for images that have SICD metadata. The metadata is provided as XML that conforms to the SICD specifications. We intend to support multiple SICD versions but the current software was implemented using the v1.2.1 and v1.3.0 specifications. """ def __init__(self, sicd_xml: str): """ Construct the builder given the SICD XML. :param sicd_xml: the XML string """ super().__init__() self.sicd_xml = sicd_xml
[docs] def build(self) -> Optional[SensorModel]: """ Attempt to build a precise SAR sensor model. This sensor model handles chipped images natively. :return: the sensor model; if available """ try: if self.sicd_xml is None or len(self.sicd_xml) == 0: return None parser = XmlParser() sicd = parser.from_string(self.sicd_xml) return SICDSensorModelBuilder.from_dataclass(sicd) except Exception as e: logging.error("Exception caught attempting to build SICD sensor model.", e) return None
[docs] @staticmethod def from_dataclass(sicd: Union[sicd121.SICD, sicd130.SICD]) -> Optional[SensorModel]: """ This method constructs a SICD sensor model from the python dataclasses generated when parsing the XML. :param sicd: the dataclass object constructed from the XML :return: the sensor model; if available """ scp_ecf = WorldCoordinate(xyztype_to_ndarray(sicd.geo_data.scp.ecf)) scp_pixel = ImageCoordinate([sicd.image_data.scppixel.col, sicd.image_data.scppixel.row]) time_coa_poly = poly2d_to_native(sicd.grid.time_coapoly) arp_poly = xyzpoly_to_native(sicd.position.arppoly) coord_converter = SARImageCoordConverter( scp_pixel=scp_pixel, scp_ecf=scp_ecf, u_row=xyztype_to_ndarray(sicd.grid.row.uvect_ecf), u_col=xyztype_to_ndarray(sicd.grid.col.uvect_ecf), row_ss=sicd.grid.row.ss, col_ss=sicd.grid.col.ss, first_pixel=ImageCoordinate([sicd.image_data.first_col, sicd.image_data.first_row]), ) projection_set = None ugpn = None if sicd.grid.type_value.value == sicd121.ImageGridType.RGAZIM.value: if sicd.image_formation.image_form_algo.value == sicd121.ImageFormAlgo.PFA.value: ugpn = xyztype_to_ndarray(sicd.pfa.fpn) projection_set = PFAProjectionSet( scp_ecf=scp_ecf, polar_ang_poly=poly1d_to_native(sicd.pfa.polar_ang_poly), spatial_freq_sf_poly=poly1d_to_native(sicd.pfa.spatial_freq_sfpoly), coa_time_poly=time_coa_poly, arp_poly=arp_poly, ) elif sicd.image_formation.image_form_algo.value == sicd121.ImageFormAlgo.RGAZCOMP.value: projection_set = RGAZCOMPProjectionSet( scp_ecf=scp_ecf, az_scale_factor=sicd.rg_az_comp.az_sf, coa_time_poly=time_coa_poly, arp_poly=arp_poly ) elif sicd.grid.type_value.value == sicd121.ImageGridType.RGZERO.value: projection_set = INCAProjectionSet( r_ca_scp=sicd.rma.inca.r_ca_scp, inca_time_coa_poly=poly1d_to_native(sicd.rma.inca.time_capoly), drate_sf_poly=poly2d_to_native(sicd.rma.inca.drate_sfpoly), coa_time_poly=time_coa_poly, arp_poly=arp_poly, ) elif sicd.grid.type_value.value in [ sicd121.ImageGridType.PLANE.value, sicd121.ImageGridType.XCTYAT.value, sicd121.ImageGridType.XRGYCR.value, ]: projection_set = PlaneProjectionSet( scp_ecf=scp_ecf, image_plane_urow=xyztype_to_ndarray(sicd.grid.row.uvect_ecf), image_plane_ucol=xyztype_to_ndarray(sicd.grid.col.uvect_ecf), coa_time_poly=time_coa_poly, arp_poly=arp_poly, ) else: logger.warning(f"SICD image with unknown grid type {sicd.grid.type_value}. No sensor model created.") return None sicd_sensor_model = SICDSensorModel( coord_converter=coord_converter, coa_projection_set=projection_set, u_spn=SICDSensorModel.compute_u_spn( scp_ecf=scp_ecf, scp_arp=xyztype_to_ndarray(sicd.scpcoa.arppos), scp_varp=xyztype_to_ndarray(sicd.scpcoa.arpvel), side_of_track=str(sicd.scpcoa.side_of_track.value), ), side_of_track=str(sicd.scpcoa.side_of_track.value), u_gpn=ugpn, ) return sicd_sensor_model