Implementar e configurar o agente Story
Tarefa 1: Implementar o Agente de História
Seção intitulada “Tarefa 1: Implementar o Agente de História”O Agente de História é um agente Strands que, dado um Game e uma lista de Actions como contexto, irá progredir uma narrativa. Configuraremos o agente para interagir com nosso Inventory MCP Server e gerenciar os itens disponíveis de um jogador.
Implementação do Agente
Seção intitulada “Implementação do Agente”Para implementar nosso agente, atualize os seguintes arquivos em packages/story/dungeon_adventure_story/agent:
import uuid
import uvicornfrom bedrock_agentcore.runtime.models import PingStatusfrom fastapi.responses import PlainTextResponse, StreamingResponsefrom pydantic import BaseModel
from .agent import get_agentfrom .init import app
class Action(BaseModel): role: str content: str
class InvokeInput(BaseModel): playerName: str genre: str actions: list[Action]
async def handle_invoke(input: InvokeInput): """Streaming handler for agent invocation""" messages = [{"role": "user", "content": [{"text": "Continue or create a new story..."}]}] for action in input.actions: messages.append({"role": action.role, "content": [{"text": action.content}]})
with get_agent(input.playerName, input.genre, session_id=str(uuid.uuid4())) as agent: stream = agent.stream_async(messages) async for event in stream: print(event) content = event.get("event", {}).get("contentBlockDelta", {}).get("delta", {}).get("text") if content is not None: yield content elif event.get("event", {}).get("messageStop") is not None: yield "\n"
@app.post("/invocations", openapi_extra={"x-streaming": True}, response_class=PlainTextResponse)async def invoke(input: InvokeInput) -> str: """Entry point for agent invocation""" return StreamingResponse(handle_invoke(input), media_type="text/event-stream")
@app.get("/ping")def ping() -> str: # TODO: if running an async task, return PingStatus.HEALTHY_BUSY return PingStatus.HEALTHY
if __name__ == "__main__": uvicorn.run("dungeon_adventure_story.agent.main:app", port=8080)import uuid
import uvicornfrom bedrock_agentcore.runtime.models import PingStatusfrom fastapi.responses import PlainTextResponse, StreamingResponsefrom pydantic import BaseModel
from .agent import get_agentfrom .init import app
class Action(BaseModel): role: str content: str
class InvokeInput(BaseModel): prompt: str session_id: str playerName: str genre: str actions: list[Action]
async def handle_invoke(input: InvokeInput): """Streaming handler for agent invocation""" with get_agent(session_id=input.session_id) as agent: stream = agent.stream_async(input.prompt) messages = [{"role": "user", "content": [{"text": "Continue or create a new story..."}]}] for action in input.actions: messages.append({"role": action.role, "content": [{"text": action.content}]})
with get_agent(input.playerName, input.genre, session_id=str(uuid.uuid4())) as agent: stream = agent.stream_async(messages) async for event in stream: print(event) content = event.get("event", {}).get("contentBlockDelta", {}).get("delta", {}).get("text") if content is not None: yield content elif event.get("event", {}).get("messageStop") is not None: yield "\n"
@app.post("/invocations", openapi_extra={"x-streaming": True}, response_class=PlainTextResponse)async def invoke(input: InvokeInput) -> str: """Entry point for agent invocation""" return StreamingResponse(handle_invoke(input), media_type="text/event-stream")
@app.get("/ping")def ping() -> str: # TODO: if running an async task, return PingStatus.HEALTHY_BUSY return PingStatus.HEALTHY
if __name__ == "__main__": uvicorn.run("dungeon_adventure_story.agent.main:app", port=8080)import osfrom contextlib import contextmanager
import boto3from strands import Agent
from .agentcore_mcp_client import AgentCoreMCPClient
# Obtain the region and credentialsregion = os.environ["AWS_REGION"]boto_session = boto3.Session(region_name=region)credentials = boto_session.get_credentials()
@contextmanagerdef get_agent(player_name: str, genre: str, session_id: str): mcp_client = AgentCoreMCPClient.with_iam_auth( agent_runtime_arn=os.environ["INVENTORY_MCP_ARN"], credentials=credentials, region=region, session_id=session_id, ) with mcp_client: yield Agent( system_prompt=f"""You are running a text adventure game in the genre <genre>{genre}</genre> for player <player>{player_name}</player>.Construct a scenario and give the player decisions to make.Use the tools to manage the player's inventory as items are obtained or lost.When adding, removing or updating items in the inventory, always list items to check the current state,and be careful to match item names exactly. Item names in the inventory must be Title Case.Ensure you specify a suitable emoji when adding items if available.When starting a game, populate the inventory with a few initial items. Items should be a key part of the narrative.Keep responses under 100 words.""", tools=[*mcp_client.list_tools_sync()], )import osfrom contextlib import contextmanager
from strands import Agent, toolfrom strands_tools import current_timeimport boto3from strands import Agent
from .agentcore_mcp_client import AgentCoreMCPClient
# Define a custom tool@tooldef add(a: int, b: int) -> int: return a + b# Obtain the region and credentialsregion = os.environ["AWS_REGION"]boto_session = boto3.Session(region_name=region)credentials = boto_session.get_credentials()
@contextmanagerdef get_agent(session_id: str): yield Agent( system_prompt="""You are an addition wizard.Use the 'add' tool for addition tasks.Refer to tools as your 'spellbook'.""", tools=[add, current_time],def get_agent(player_name: str, genre: str, session_id: str): mcp_client = AgentCoreMCPClient.with_iam_auth( agent_runtime_arn=os.environ["INVENTORY_MCP_ARN"], credentials=credentials, region=region, session_id=session_id, ) with mcp_client: yield Agent( system_prompt=f"""You are running a text adventure game in the genre <genre>{genre}</genre> for player <player>{player_name}</player>.Construct a scenario and give the player decisions to make.Use the tools to manage the player's inventory as items are obtained or lost.When adding, removing or updating items in the inventory, always list items to check the current state,and be careful to match item names exactly. Item names in the inventory must be Title Case.Ensure you specify a suitable emoji when adding items if available.When starting a game, populate the inventory with a few initial items. Items should be a key part of the narrative.Keep responses under 100 words.""", tools=[*mcp_client.list_tools_sync()], )Esta configuração implementa:
- Extração do jogador, gênero e ações do payload do agente,
- Construção de um cliente que o Agente pode usar para invocar nosso MCP Server com autenticação SigV4, e
- Construção do agente com um prompt de sistema e as ferramentas do MCP Server.
Tarefa 2: Implantação e testes
Seção intitulada “Tarefa 2: Implantação e testes”Construir o código
Seção intitulada “Construir o código”Para construir o código:
pnpm nx run-many --target build --allyarn nx run-many --target build --allnpx nx run-many --target build --allbunx nx run-many --target build --allImplantar sua aplicação
Seção intitulada “Implantar sua aplicação”Para implantar sua aplicação, execute o seguinte comando:
pnpm nx deploy infra dungeon-adventure-infra-sandbox/*yarn nx deploy infra dungeon-adventure-infra-sandbox/*npx nx deploy infra dungeon-adventure-infra-sandbox/*bunx nx deploy infra dungeon-adventure-infra-sandbox/*Esta implantação levará aproximadamente 2 minutos para ser concluída.
Após a conclusão da implantação, você verá saídas similares às seguintes (alguns valores foram redigidos):
dungeon-adventure-infra-sandbox-Applicationdungeon-adventure-infra-sandbox-Application: deploying... [2/2]
✅ dungeon-adventure-infra-sandbox-Application
✨ Deployment time: 354s
Outputs:dungeon-adventure-infra-sandbox-Application.ElectroDbTableTableNameXXX = dungeon-adventure-infra-sandbox-Application-ElectroDbTableXXX-YYYdungeon-adventure-infra-sandbox-Application.GameApiEndpointXXX = https://xxx.execute-api.region.amazonaws.com/prod/dungeon-adventure-infra-sandbox-Application.GameUIDistributionDomainNameXXX = xxx.cloudfront.netdungeon-adventure-infra-sandbox-Application.InventoryMcpArn = arn:aws:bedrock-agentcore:region:xxxxxxx:runtime/dungeonadventureventoryMcpServerXXXX-YYYYdungeon-adventure-infra-sandbox-Application.StoryAgentArn = arn:aws:bedrock-agentcore:region:xxxxxxx:runtime/dungeonadventurecationStoryAgentXXXX-YYYYdungeon-adventure-infra-sandbox-Application.UserIdentityUserIdentityIdentityPoolIdXXX = region:xxxdungeon-adventure-infra-sandbox-Application.UserIdentityUserIdentityUserPoolIdXXX = region_xxxTestar sua API
Seção intitulada “Testar sua API”Você pode testar sua API de duas formas:
- Iniciando uma instância local do servidor Agent e invocando-o usando
curl, ou - Chamando a API implantada usando curl com um token JWT.
Inicie seu servidor Agent local executando o seguinte comando:
INVENTORY_MCP_ARN=arn:aws:bedrock-agentcore:region:xxxxxxx:runtime/dungeonadventureventoryMcpServerXXXX-YYYY AWS_REGION=<region> pnpm nx run dungeon_adventure.story:agent-serveINVENTORY_MCP_ARN=arn:aws:bedrock-agentcore:region:xxxxxxx:runtime/dungeonadventureventoryMcpServerXXXX-YYYY AWS_REGION=<region> yarn nx run dungeon_adventure.story:agent-serveINVENTORY_MCP_ARN=arn:aws:bedrock-agentcore:region:xxxxxxx:runtime/dungeonadventureventoryMcpServerXXXX-YYYY AWS_REGION=<region> npx nx run dungeon_adventure.story:agent-serveINVENTORY_MCP_ARN=arn:aws:bedrock-agentcore:region:xxxxxxx:runtime/dungeonadventureventoryMcpServerXXXX-YYYY AWS_REGION=<region> bunx nx run dungeon_adventure.story:agent-serveUma vez que o servidor Agent esteja em execução (você não verá nenhuma saída), invoque-o executando o seguinte comando:
curl -N -X POST http://127.0.0.1:8081/invocations \ -d '{"genre":"superhero", "actions":[], "playerName":"UnnamedHero"}' \ -H "Content-Type: application/json"Para testar o agente implantado, você precisará autenticar com Cognito e obter um token JWT. Primeiro, configure suas variáveis de ambiente:
# Defina seu Cognito User Pool ID e Client ID das saídas do CDKexport POOL_ID="<UserPoolId das saídas do CDK>"export CLIENT_ID="<UserPoolClientId das saídas do CDK>"export REGION="<sua-regiao>"Crie um usuário de teste e obtenha um token de autenticação:
# Criar Usuárioaws cognito-idp admin-create-user \ --user-pool-id $POOL_ID \ --username "testuser" \ --temporary-password "TempPass123!" \ --region $REGION \ --message-action SUPPRESS > /dev/null
# Definir Senha Permanente (substitua por algo mais seguro!)aws cognito-idp admin-set-user-password \ --user-pool-id $POOL_ID \ --username "testuser" \ --password "PermanentPass123!" \ --region $REGION \ --permanent > /dev/null
# Autenticar Usuário e capturar ID Tokenexport BEARER_TOKEN=$(aws cognito-idp initiate-auth \ --client-id "$CLIENT_ID" \ --auth-flow USER_PASSWORD_AUTH \ --auth-parameters USERNAME='testuser',PASSWORD='PermanentPass123!' \ --region $REGION | jq -r '.AuthenticationResult.IdToken')Invoque o agente implantado usando a URL do runtime do Bedrock AgentCore:
# Defina a ARN do Story Agent das saídas do CDKexport AGENT_ARN="<StoryAgentArn das saídas do CDK>"
# Codifique a ARN em URLexport ENCODED_ARN=$(echo $AGENT_ARN | sed 's/:/%3A/g' | sed 's/\//%2F/g')
# Construa a URL de invocaçãoexport MCP_URL="https://bedrock-agentcore.$REGION.amazonaws.com/runtimes/$ENCODED_ARN/invocations?qualifier=DEFAULT"
# Invoque o agentecurl -N -X POST "$MCP_URL" \ -H "authorization: Bearer $BEARER_TOKEN" \ -H "Content-Type: application/json" \ -H "X-Amzn-Bedrock-AgentCore-Runtime-Session-Id: abcdefghijklmnopqrstuvwxyz-123456789" \ -d '{"genre":"superhero", "actions":[], "playerName":"UnnamedHero"}'Se o comando for executado com sucesso, você verá eventos sendo transmitidos de forma similar a:
data: {"init_event_loop": true}
data: {"start": true}
data: {"start_event_loop": true}
data: {"event": {"messageStart": {"role": "assistant"}}}
data: {"event": {"contentBlockDelta": {"delta": {"text": "Welcome"}, "contentBlockIndex": 0}}}
...Parabéns. Você construiu e implantou seu primeiro Agente Strands no Bedrock AgentCore Runtime! 🎉🎉🎉